The generalization gap on the long-tailed data sets is largely owing to most categories only occupying a few training samples. Decoupled training achieves better performance by training backbone and classifier separately. What causes the poorer performance of end-to-end model training (e.g., logits margin-based methods)? In this work, we identify a key factor that affects the learning of the classifier: the channel-correlated features with low entropy before inputting into the classifier. From the perspective of information theory, we analyze why cross-entropy loss tends to produce highly correlated features on the imbalanced data. In addition, we theoretically analyze and prove its impacts on the gradients of classifier weights, the condition number of Hessian, and logits margin-based approach. Therefore, we firstly propose to use Channel Whitening to decorrelate ("scatter") the classifier's inputs for decoupling the weight update and reshaping the skewed decision boundary, which achieves satisfactory results combined with logits margin-based method. However, when the number of minor classes are large, batch imbalance and more participation in training cause over-fitting of the major classes. We also propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET) to solve the above problems, which makes the end-to-end training achieve even better performance than decoupled training. Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
翻译:长尾数据集的普遍化差距主要归因于大多数类别只使用少数培训样本。 分解的培训通过分别培训骨干和分类者而取得更好的业绩。 是什么导致端到端模式培训表现较差( 日志边基方法)? 在这项工作中, 我们确定影响分类者学习的一个关键因素: 在输入分类器之前, 频道相关特性在向分类器输入之前, 与频道相关特性的加密率较低。 从信息理论的角度来看, 我们分析为什么交叉渗透性基准损失往往在不平衡数据上产生高度关联性特征。 此外, 我们理论上分析和证明它对分类器重量梯度梯度、 Hesassian 条件和对端差边边边方法的影响。 因此, 我们首先提议使用频道白度到分解( “ 分解 分解 ” ), 分类器投入来分解重量更新和调整扭曲性决定边界, 从而取得令人满意的结果, 加上基于偏差方法。 然而, 当小类的解分级( 分级、 分级培训分级到分级后, ) 和分级培训中分级后, 分级( 我们分级后分级到分级后, 分级后分级培训的分级后, ) 分级到分级后,,, 分级培训比分级培训的分级( 分级培训比分级后分级培训比分级) 分级后,,,, 分级制的分级后,, 分级后分级培训比分级制的分级培训的分级制的分级,分级, 。</s>