In this paper one develops nonparametric inference procedures for comparing two extrinsic antimeans on compact manifolds. Based on recent Central limit theorems for extrinsic sample antimeans w.r.t. an arbitrary embedding of a compact manifold in a Euclidean space, one derives an asymptotic chi square test for the equality of two extrinsic antimeans. Applications are given to distributions on complex projective space $CP^{k-2}$ w.r.t. the Veronese-Whitney embedding, that is a submanifold representation for the Kendall planar shape space. Two medical imaging analysis applications are also given.
翻译:在本文中,一个开发了非参数推论程序,用于比较两件紧凑的外形反装置的外形反装置。根据最近对外形样本反装置的中央限值理论(w.r.t.),一个任意将一个紧凑的元件嵌入欧几里德空间,一个生成了两种外形反装置等同的无药可循的黑方测试。还应用了两种医学成像分析应用,即Veronese-Whitney嵌入的复合投射空间的分布($CP ⁇ k-2} w.r.t.t. Veronese-Whitney嵌入。