In this paper, we consider the balancing domain decomposition by constraints (BDDC) algorithm with adaptive coarse spaces for a class of stochastic elliptic problems. The key ingredient in the construction of the coarse space is the solutions of local spectral problems, which depend on the coefficient of the PDE. This poses a significant challenge for stochastic coefficients as it is computationally expensive to solve the local spectral problems for every realisation of the coefficient. To tackle this computational burden, we propose a machine learning approach. Our method is based on the use of a deep neural network (DNN) to approximate the relation between the stochastic coefficients and the coarse spaces. For the input of the DNN, we apply the Karhunen-Lo\`eve expansion and use the first few dominant terms in the expansion. The output of the DNN is the resulting coarse space, which is then applied with the standard adaptive BDDC algorithm. We will present some numerical results with oscillatory and high contrast coefficients to show the efficiency and robustness of the proposed scheme.
翻译:在本文中,我们考虑了平衡领域因制约(BDDC)算法而分解的平衡领域(BDDC)算法,该算法具有适应性粗略空间,用于处理一类随机异构问题。构建粗略空间的关键成分是当地光谱问题的解决办法,这取决于PDE的系数。这对随机系数提出了重大挑战,因为计算成本高昂,以解决每个系数的实现都会产生本地光谱问题。为了解决这一计算负担,我们建议了一种机器学习方法。我们的方法是基于使用深神经网络(DNN),以近似随机系数和粗略空间之间的关系。对于 DNN(DN),我们应用Karhunen-Lo ⁇ eve扩展法,并在扩展时使用第一个占支配地位的术语。DNN(Karhunen-Lo ⁇ eve)的输出是由此产生的粗糙空间,然后与标准的适应性BDDC算法一起应用。我们将用一些随机和高对比系数来显示拟议方案的效率和稳健度。