Conditional independence models associated with directed acyclic graphs (DAGs) may be characterized in at least three different ways: via a factorization, the global Markov property (given by the d-separation criterion), and the local Markov property. Marginals of DAG models also imply equality constraints that are not conditional independences; the well-known ``Verma constraint'' is an example. Constraints of this type are used for testing edges, and in a computationally efficient marginalization scheme via variable elimination. We show that equality constraints like the ``Verma constraint'' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via ordered local and global Markov properties, and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We prove that marginal distributions of DAG models lie in this model, and that a set of these constraints given by Tian provides an alternative definition of the model. Finally, we show that the fixing operation used to define the model leads to a particularly simple characterization of identifiable causal effects in hidden variable causal DAG models.
翻译:与有向无环图(DAGs)相关联的条件独立模型可以用至少三种不同的方式进行表征:通过因式分解,全局马尔可夫性质(由d-分离准则给出),和局部马尔可夫性质。DAG模型的边际也暗示着不是条件独立性的等式约束;众所周知的“Verma约束”就是一个例子。这种类型的约束用于测试边缘,并通过变量消除实现计算有效的边际化方案。
我们表明像“Verma约束”这样的等式约束可以被视为从联合分布中得到的内核对象中的条件独立性,通过广义条件化和边际化操作,我们使用这些约束来定义与非循环有向混合图(ADMGs)相关联的图形模型,通过有序局部性,全局性马尔可夫性质和因式分解。我们证明DAG模型的边际分布属于这个模型,并且Tian提供的一组这些约束提供了模型的另一种定义。最后,我们证明,使用用于定义模型的固定操作可以特别简单地描述在隐藏变量因果DAG模型中的可识别因果效应。