In Bayesian Network Regression models, networks are considered the predictors of continuous responses. These models have been successfully used in brain research to identify regions in the brain that are associated with specific human traits, yet their potential to elucidate microbial drivers in biological phenotypes for microbiome research remains unknown. In particular, microbial networks are challenging due to their high-dimension and high sparsity compared to brain networks. Furthermore, unlike in brain connectome research, in microbiome research, it is usually expected that the presence of microbes have an effect on the response (main effects), not just the interactions. Here, we develop the first thorough investigation of whether Bayesian Network Regression models are suitable for microbial datasets on a variety of synthetic data that was generated under realistic biological scenarios. We test whether the Bayesian Network Regression model that accounts only for interaction effects (edges in the network) is able to identify key drivers in phenotypic variability (microbes). We show that this model is indeed able to identify influential nodes and edges in the microbial networks that drive changes in the phenotype for most biological settings, but we also identify scenarios where this method performs poorly which allows us to provide practical advice for domain scientists aiming to apply these tools to their datasets. Finally, we implement the model in a publicly available Julia package at https://github.com/solislemuslab/BayesianNetworkRegression.jl.


翻译:在Bayesian网络回归模型中,网络被认为是持续反应的预测因素。这些模型被成功地用于大脑研究,以确认大脑中与特定人类特性相关的区域,但是它们为微生物研究而在生物苯型研究中解释微生物驱动因素的潜力仍然未知。特别是,微生物网络因其高度分散和与大脑网络相比的偏狭性而具有挑战性。此外,与大脑连接研究不同,在微生物研究中,通常预期微生物的存在会对反应(主要影响)产生影响,而不仅仅是相互作用。在这里,我们开发了第一次彻底调查,了解Bayesian网络回归模型是否适合用于在现实生物假设下产生的各种合成数据中的微生物数据集。我们测试了Bayesian网络回归模型是否因其高度分散性和与大脑网络相比具有挑战性。此外,与大脑连接性研究不同,通常预计微生物网络的存在对反应(主要驱动因素)产生影响(主要影响),而不仅仅是相互作用。我们发现这个模型确实能够识别微生物网络中的有影响的节点和边缘。我们开发了Byesian网络的模型,推动在现实的模型中,我们将这些模型应用了最差的模型来测量模型,我们最终将这些模型用于生物结构的模型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员