Given different types of constraints on human life, people must make decisions that satisfy social activity needs. Minimizing costs (i.e., distance, time, or money) associated with travel plays an important role in perceived and realized social quality of life. Identifying optimal interaction locations on road networks when there are multiple moving objects (MMO) with space-time constraints remains a challenge. In this research, we formalize the problem of finding dynamic ideal interaction locations for MMO as a spatial optimization model and introduce a context-based geoprocessing heuristic framework to address this problem. As a proof of concept, a case study involving identification of a meetup location for multiple people under traffic conditions is used to validate the proposed geoprocessing framework. Five heuristic methods with regard to efficient shortest-path search space have been tested. We find that the R* tree-based algorithm performs the best with high quality solutions and low computation time. This framework is implemented in a GIS environment to facilitate integration with external geographic contextual information, e.g., temporary road barriers, points of interest (POI), and real-time traffic information, when dynamically searching for ideal meetup sites. The proposed method can be applied in trip planning, carpooling services, collaborative interaction, and logistics management.


翻译:鉴于人类生活受到不同种类的限制,人们必须作出符合社会活动需要的决定; 尽量减少与旅行有关的费用(即距离、时间或金钱)在人们的感知和实现社会生活质量方面发挥着重要作用; 确定道路网络中具有多种移动物体(MMO)且时间有限的最佳互动地点仍然是一项挑战; 在这项研究中,我们正式确定为MMO寻找动态理想互动地点作为空间优化模式的问题,并引入一个基于背景的地质处理超速框架来解决这一问题; 作为概念的证明,在动态搜索理想匹配地点时,使用涉及为交通条件下的多个人员确定一个会合地点的案例研究来验证拟议的地理处理框架; 测试了高效最短路途搜索空间的五种超常方法; 我们发现,基于树木的算法以高质量解决方案和低计算时间为最佳表现; 在地理信息系统环境中实施这一框架,以促进与外部地理背景信息(例如临时道路障碍、兴趣点)的融合; 实时交通信息,作为概念的证明; 在动态搜索理想匹配地点时,可以使用拟议的方法,用于旅行规划、汽车管理方面的合作。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员