Perception of time from sequentially acquired sensory inputs is rooted in everyday behaviors of individual organisms. Yet, most algorithms for time-series modeling fail to learn dynamics of random event timings directly from visual or audio inputs, requiring timing annotations during training that are usually unavailable for real-world applications. For instance, neuroscience perspectives on postdiction imply that there exist variable temporal ranges within which the incoming sensory inputs can affect the earlier perception, but such temporal ranges are mostly unannotated for real applications such as automatic speech recognition (ASR). In this paper, we present a probabilistic ordinary differential equation (ODE), called STochastic boundaRy ODE (STRODE), that learns both the timings and the dynamics of time series data without requiring any timing annotations during training. STRODE allows the usage of differential equations to sample from the posterior point processes, efficiently and analytically. We further provide theoretical guarantees on the learning of STRODE. Our empirical results show that our approach successfully infers event timings of time series data. Our method achieves competitive or superior performances compared to existing state-of-the-art methods for both synthetic and real-world datasets.


翻译:从按顺序获得的感官投入中的时间感知感知的观念根植于个别生物的日常行为。然而,大多数时间序列模型的算法都未能直接从视觉或音频输入中了解随机事件时间的动态,在培训过程中需要时间序列数据的动态说明,而对于现实世界的应用来说,这种时间序列通常没有时间序列说明。例如,关于后台的神经科学观点意味着,在不同的时间范围内,接收的感官投入可以影响先前的感知,但对于自动语音识别(ASR)等真实应用而言,这种时间范围大多没有附加说明。在本文中,我们提出了一种概率性普通差异方程式(ODE),称为Stochatistic bulaRy ODE(STODE),在培训过程中不需要任何时间序列数据的时间序列说明,而需要时间序列数据的时间安排说明。STRODE允许使用差异方程式,从远端点过程的样本中高效和分析性地、分析性地进行。我们进一步从理论上保证STRODE的学习。我们的经验结果显示,我们的方法成功地推算出时间序列中的时间事件的时间序列的时机。我们的方法比现有的合成数据和世界数据方法都具有竞争性或优越性或优性。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
41+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员