The configurable building blocks of current FPGAs -- Logic blocks (LBs), Digital Signal Processing (DSP) slices, and Block RAMs (BRAMs) -- make them efficient hardware accelerators for the rapid-changing world of Deep Learning (DL). Communication between these blocks happens through an interconnect fabric consisting of switching elements spread throughout the FPGA. In this paper, a new block, Compute RAM, is proposed. Compute RAMs provide highly-parallel processing-in-memory (PIM) by combining computation and storage capabilities in one block. Compute RAMs can be integrated in the FPGA fabric just like the existing FPGA blocks and provide two modes of operation (storage or compute) that can be dynamically chosen. They reduce power consumption by reducing data movement, provide adaptable precision support, and increase the effective on-chip memory bandwidth. Compute RAMs also help increase the compute density of FPGAs. In our evaluation of addition, multiplication and dot-product operations across multiple data precisions (int4, int8 and bfloat16), we observe an average savings of 80% in energy consumption, and an improvement in execution time ranging from 20% to 80%. Adding Compute RAMs can benefit non-DL applications as well, and make FPGAs more efficient, flexible, and performant accelerators.


翻译:在当前 FPGA 切片 -- -- 逻辑区块(LBs)、数字信号处理(DSP) 和块内存(BRAM) 的可配置构件块 -- -- 逻辑区块(LBs)、数字信号处理(DSP) 和块内存(BRAMs) -- -- 使这些区块之间的沟通通过由切换元素构成的互连结构而发生。在本文中,提议了一个新的区块,即计算内存(Compete RAs) 。计算内存(PIM), 将计算和存储能力合并到一个区块内存(BRAMs) 。可以像现有的FPGA 区块那样,将内存带(DS) 的硬硬硬件加速器加速器(DRM) 整合到 FPGA 结构中, 在80 平均节能中,在80 节能中,在80 节能中,在80 节能中,在运行,在80 节能中,在80 节能中,在运行,在80次的节能中,在80次内,在运行,在80次的节能中,在80次的节能中,在80次的节能中,在80次的节能中,在80次的节能。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员