Bayesian approaches for training deep neural networks (BNNs) have received significant interest and have been effectively utilized in a wide range of applications. There have been several studies on the properties of posterior concentrations of BNNs. However, most of these studies only demonstrate results in BNN models with sparse or heavy-tailed priors. Surprisingly, no theoretical results currently exist for BNNs using Gaussian priors, which are the most commonly used one. The lack of theory arises from the absence of approximation results of Deep Neural Networks (DNNs) that are non-sparse and have bounded parameters. In this paper, we present a new approximation theory for non-sparse DNNs with bounded parameters. Additionally, based on the approximation theory, we show that BNNs with non-sparse general priors can achieve near-minimax optimal posterior concentration rates to the true model.
翻译:暂无翻译