Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms. In contrast to static models, the dynamic setting allows to update the prices between buyer-arrivals based on the remaining sets of items and buyers, and so it is capable of maximizing social welfare without the need for a central coordinator. In this paper, we study the existence of optimal dynamic pricing schemes in combinatorial markets. In particular, we concentrate on multi-demand valuations, a natural extension of unit-demand valuations. The proposed approach is based on computing an optimal dual solution of the maximum social welfare problem with distinguished structural properties. Our contribution is twofold. By relying on an optimal dual solution, we show the existence of optimal dynamic prices in unit-demand markets and in multi-demand markets up to three buyers, thus giving new interpretations of results of Cohen-Addad et al. and Berger et al. , respectively. Furthermore, we provide an optimal dynamic pricing scheme for bi-demand valuations with an arbitrary number of buyers. In all cases, our proofs also provide efficient algorithms for determining the optimal dynamic prices.


翻译:动态定价计划是作为上市价格机制的替代物而引入的。与静态模式相反,动态环境允许根据剩余一批物品和买主更新买家之间的价格,从而能够在不需要中央协调员的情况下实现社会福利最大化。在本文中,我们研究了在组合市场中存在最佳动态定价计划的问题。我们特别侧重于多需求估值,即单位-需求估值的自然延伸。拟议方法的基础是计算具有独特结构特性的最大社会福利问题的最佳双向解决方案。我们的贡献是双重的。我们依靠一种最佳的双向解决方案,表明在单位-需求市场和多达三个多需求市场中存在最佳动态价格,从而分别对Chohen-Addad等人和Berger等人的结果作出新的解释。此外,我们为双需求估值提供了最佳动态定价计划,并有任意数量的买家。在所有情况下,我们的证据也为确定最佳动态价格提供了高效的算法。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员