This paper presents a computationally efficient machine-learned method for natural language response suggestion. Feed-forward neural networks using n-gram embedding features encode messages into vectors which are optimized to give message-response pairs a high dot-product value. An optimized search finds response suggestions. The method is evaluated in a large-scale commercial e-mail application, Inbox by Gmail. Compared to a sequence-to-sequence approach, the new system achieves the same quality at a small fraction of the computational requirements and latency.
翻译:本文件为自然语言响应建议提供了一种计算高效的机器学习方法。 使用 n 克嵌入功能将信息编码到矢量中的进化神经网络, 优化这些功能以给信息- 响应对配带来高点产品价值。 优化搜索会发现响应建议。 该方法通过大型商业电子邮件应用程序Inbox by Gmail来评估。 与顺序到顺序方法相比, 新系统在微小的计算要求和时间长度中达到相同质量 。