We discuss a discretisation of the de Rham-Hodge theory in the two-dimensional case based on a discrete exterior calculus framework. We present discrete analogues of the Hodge-Dirac and Laplace operators in which key geometric aspects of the continuum counterpart are captured. We provide and prove a discrete version of the Hodge decomposition theorem. Special attention has been paid to discrete models on a combinatorial torus. In this particular case, we also define and calculate the cohomology groups.
翻译:我们根据离散外部微积分框架,讨论二维案例的德拉姆-霍奇理论的分解问题。我们展示了Hodge-Dirac和Laplace操作器的离散模拟器,其中捕捉了连续性对口操作器的关键几何方面。我们提供并证明Hodge分解定理词的离散版本。我们特别注意组合图象上的离散模型。在这个特定案例中,我们还定义并计算了共热组。