Recurrent neural networks have proven effective in modeling sequential user feedbacks for recommender systems. However, they usually focus solely on item relevance and fail to effectively explore diverse items for users, therefore harming the system performance in the long run. To address this problem, we propose a new type of recurrent neural networks, dubbed recurrent exploration networks (REN), to jointly perform representation learning and effective exploration in the latent space. REN tries to balance relevance and exploration while taking into account the uncertainty in the representations. Our theoretical analysis shows that REN can preserve the rate-optimal sublinear regret even when there exists uncertainty in the learned representations. Our empirical study demonstrates that REN can achieve satisfactory long-term rewards on both synthetic and real-world recommendation datasets, outperforming state-of-the-art models.
翻译:事实证明,经常性神经网络在为推荐人系统建立连续用户反馈模型方面行之有效,但它们通常只注重项目相关性,未能有效为用户有效探索各种项目,从而从长远看损害系统性能。为了解决这一问题,我们提议了新型的经常性神经网络,称为经常性勘探网络,以在潜在空间共同进行代表性学习和有效探索。REN试图平衡相关性和探索性,同时考虑到表述中的不确定性。我们的理论分析表明,REN即使在有知识的表述存在不确定性的情况下,也能保持速度最佳的亚线性遗憾。我们的实证研究表明,REN可以在合成和现实世界建议数据集方面实现令人满意的长期奖励,超过最新模型。