Modern agricultural operations increasingly rely on integrated monitoring systems that combine multiple data sources for farm optimization. Aerial drone-based animal health monitoring serves as a key component but faces limited data availability, compounded by scene-specific issues such as small, occluded, or partially visible animals. Transfer learning approaches often fail to address this limitation due to the unavailability of large datasets that reflect specific farm conditions, including variations in animal breeds, environments, and behaviors. Therefore, there is a need for developing a problem-specific, animal-focused data augmentation strategy tailored to these unique challenges. To address this gap, we propose an object-focused data augmentation framework designed explicitly for animal health monitoring in constrained data settings. Our approach segments animals from backgrounds and augments them through transformations and diffusion-based synthesis to create realistic, diverse scenes that enhance animal detection and monitoring performance. Our initial experiments demonstrate that our augmented dataset yields superior performance compared to our baseline models on the animal detection task. By generating domain-specific data, our method empowers real-time animal health monitoring solutions even in data-scarce scenarios, bridging the gap between limited data and practical applicability.
翻译:暂无翻译