Uncertainty around predictions from a model due to the finite size of the development sample has traditionally been approached using classical inferential techniques. The finite size of the sample will result in the discrepancy between the final model and the correct model that maps covariates to predicted risks. From a decision-theoretic perspective, this discrepancy might affect the subsequent treatment decisions, and thus is associated with utility loss. From this perspective, procuring more development data is associated in expected gain in the utility of using the model. In this work, we define the Expected Value of Sample Information (EVSI) as the expected gain in clinical utility, defined in net benefit (NB) terms in net true positive units, by procuring a further development sample of a given size. We propose a bootstrap-based algorithm for EVSI computations, and show its feasibility and face validity in a case study. Decision-theoretic metrics can complement classical inferential methods when designing studies that are aimed at developing risk prediction models.
翻译:暂无翻译