Cyber-physical systems (CPS) are increasingly becoming driven by data, using multiple types of sensors to capture huge amounts of data. Extraction and characterization of useful information from big streams of data is a challenging problem. Shape expressions facilitate formal specification of rich temporal patterns encountered in time series as well as in behaviors of CPS. In this paper, we introduce a method for systematically sampling shape expressions. The proposed approach combines methods for uniform sampling of automata (for exploring qualitative shapes) with hit-and-run Monte Carlo sampling procedures (for exploring multi-dimensional parameter spaces defined by sets of possibly non-linear constraints). We study and implement several possible solutions and evaluate them in the context of visualization and testing applications.
翻译:利用多种传感器获取大量数据,网络物理系统正日益受数据驱动,使用多种类型的传感器获取大量数据。从数据大流中提取有用的信息并定性其特征是一个具有挑战性的问题。形状的表达方式有助于正式说明在时间序列中以及在CPS行为中遇到的丰富的时间模式。在本文中,我们引入了系统取样形状表达方式的方法。拟议的方法将自动数据统一取样方法(用于探索质量形状)与撞击和运行的Monte Carlo取样程序(用于探索由数组可能的非线性限制所定义的多维参数空间)结合起来(用于探索由几组可能的非线性限制所定义的多维参数空间)。我们在可视化和测试应用中研究和实施若干可能的解决办法并进行评估。