Large-scale data is an essential component of machine learning as demonstrated in recent advances in natural language processing and computer vision research. However, collecting large-scale robotic data is much more expensive and slower as each operator can control only a single robot at a time. To make this costly data collection process efficient and scalable, we propose Policy Assisted TeleOperation (PATO), a system which automates part of the demonstration collection process using a learned assistive policy. PATO autonomously executes repetitive behaviors in data collection and asks for human input only when it is uncertain about which subtask or behavior to execute. We conduct teleoperation user studies both with a real robot and a simulated robot fleet and demonstrate that our assisted teleoperation system reduces human operators' mental load while improving data collection efficiency. Further, it enables a single operator to control multiple robots in parallel, which is a first step towards scalable robotic data collection. For code and video results, see https://clvrai.com/pato
翻译:大型数据是机器学习的一个基本组成部分,这在自然语言处理和计算机视觉研究的最新进展中可以证明。然而,大规模机器人数据的收集费用要高得多,而且速度要慢得多,因为每个操作者可以一次只控制一个机器人。为了使这一昂贵的数据收集过程的效率和可扩缩,我们提议政策辅助远程操作(PATO)系统,该系统利用学习的辅助政策使示范收集过程的一部分自动化。PATO在数据收集中自主地执行重复行为,只有在无法确定要执行的子任务或行为时才能要求人的投入。我们用真正的机器人和模拟机器人机队进行远程操作用户研究,并表明我们协助的远程操作系统可以减少人类操作者的精神负荷,同时提高数据收集的效率。此外,它使单个操作者能够同时控制多个机器人,这是向可扩缩机器人数据收集迈出的第一步。关于代码和视频结果,见https://clvrai.com/pato。