Evaluating neurological disorders such as Parkinson's disease (PD) is a challenging task that requires the assessment of several motor and non-motor functions. In this paper, we present an end-to-end deep learning framework to measure PD severity in two important components, hand movement and gait, of the Unified Parkinson's Disease Rating Scale (UPDRS). Our method leverages on an Inflated 3D CNN trained by a temporal segment framework to learn spatial and long temporal structure in video data. We also deploy a temporal attention mechanism to boost the performance of our model. Further, motion boundaries are explored as an extra input modality to assist in obfuscating the effects of camera motion for better movement assessment. We ablate the effects of different data modalities on the accuracy of the proposed network and compare with other popular architectures. We evaluate our proposed method on a dataset of 25 PD patients, obtaining 72.3% and 77.1% top-1 accuracy on hand movement and gait tasks respectively.
翻译:评估帕金森氏病等神经疾病是一项艰巨的任务,需要评估几种运动和非运动功能。在本文中,我们提出了一个端到端深学习框架,以衡量统一帕金森氏病评分规模(UPDRS)的两个重要组成部分(手动和步态)中的PD严重性。我们的方法利用了受时间段框架培训的3D有线电视新闻网充气器,以学习视频数据的空间和长时段结构。我们还运用了时间关注机制来提升我们模型的性能。此外,还探索了运动界限,作为一种额外的投入模式,帮助人们消除摄影机运动的影响,以便进行更好的移动评估。我们扩大了不同数据模式对拟议网络准确性的影响,并与其他流行结构进行比较。我们分别评估了25个PD病人数据集的拟议方法,获得了72.3%和77.1%的手动和游戏任务前一至一精度。