Outlier detection is an important data mining tool that becomes particularly challenging when dealing with nominal data. First and foremost, flagging observations as outlying requires a well-defined notion of nominal outlyingness. This paper presents a definition of nominal outlyingness and introduces a general framework for quantifying outlyingness of nominal data. The proposed framework makes use of ideas from the association rule mining literature and can be used for calculating scores that indicate how outlying a nominal observation is. Methods for determining the involved hyperparameter values are presented and the concepts of variable contributions and outlyingness depth are introduced, in an attempt to enhance interpretability of the results. An implementation of the framework is tested on five real-world data sets and the key findings are outlined. The ideas presented can serve as a tool for assessing the degree to which an observation differs from the rest of the data, under the assumption of sequences of nominal levels having been generated from a Multinomial distribution with varying event probabilities.
翻译:暂无翻译