A Gauss diagram (or, more generally, a chord diagram) consists of a circle and some chords inside it. Gauss diagrams are a well-established tool in the study of topology of knots and of planar and spherical curves. Not every Gauss diagram corresponds to a knot (or an immersed curve); if it does, it is called realizable. A classical question of computational topology asked by Gauss himself is which chords diagrams are realizable. An answer was first discovered in the 1930s by Dehn, and since then many efficient algorithms for checking realizability of Gauss diagrams have been developed. Recent studies in Grinblat-Lopatkin (2018,2020) and Biryukov (2019) formulated especially simple conditions related to realizability which are expressible in terms of parity of chords intersections. The simple form of these conditions opens an opportunity for experimental investigation of Gauss diagrams using constraint satisfaction and related techniques. In this paper we report on our experiments with Gauss diagrams of small sizes (up to 11 chords) using implementations of these conditions and other algorithms in logic programming language Prolog. In particular, we found a series of counterexamples showing that that realizability criteria established by Grinblat and Lopatkin (2018,2020) and Biryukov (2019) are not completely correct.
翻译:高斯图( 或更一般地说, 和弦图) 由圆形和其中的一些和弦组成。 高斯图是研究结结、 平板曲线和球曲线的地形学的既定工具。 不是每个高斯图都对应结结结( 或沉浸曲线 ) ; 如果是结结结结( 或沉浸曲线 ) ; 如果是可变的 。 高斯自己提出的一个典型的计算表问题是一个可以实现的和弦图。 Dehn 最初在1930年代发现了一个答案, 自此以后,许多用于检查高斯图真实性的有效算法已经开发。 最近对格林布拉特-洛帕特金( 2018, 202020 ) 和比尤科夫( 2019 ) 的研究表明, 与真实性有关的条件特别简单, 以弦十字交叉的等量表示。 这些条件的简单形式为20 利用约束性满意度和相关技术对高斯图进行实验的机会。 在本文中, 我们报告我们用高斯图的 18 和低度图表图的精确性图表, 用实际逻辑序列的20 标准 展示了这些逻辑标准。