Simulating quantum algorithms on classical computers is challenging when the system size, i.e., the number of qubits used in the quantum algorithm, is moderately large. However, some quantum algorithms and the corresponding quantum circuits can be simulated efficiently on a classical computer if the input quantum state is a low-rank tensor and all intermediate states of the quantum algorithm can be represented or approximated by low-rank tensors. In this paper, we examine the possibility of simulating a few quantum algorithms by using low-rank canonical polyadic (CP) decomposition to represent the input and all intermediate states of these algorithms. Two rank reduction algorithms are used to enable efficient simulation. We show that some of the algorithms preserve the low-rank structure of the input state and can thus be efficiently simulated on a classical computer. However, the rank of the intermediate states in other quantum algorithms can increase rapidly, making efficient simulation more difficult. To some extent, such difficulty reflects the advantage or superiority of a quantum computer over a classical computer. As a result, understanding the low-rank structure of a quantum algorithm allows us to identify algorithms that can benefit significantly from quantum computers.


翻译:古典计算机的模拟量子算法在系统大小,即量子算法中使用的qubit数量是中等大的时具有挑战性。然而,如果输入量子状态是低级的,那么,如果所有量子算法的中间状态都可以由低级的 Exor 代表或近似于低级的 Exors,一些量子算法就可以在古典计算机上有效模拟一些量子算法。在本文中,我们研究是否可能通过使用低级的 Canical poliadic (CP) 分解来模拟几种量子算法,以代表这些算法的输入和所有中间状态。使用两种降级算法来进行高效模拟。我们表明,有些量子算法保留了输入状态的低级结构,因此可以在古典计算机上有效模拟。然而,中间状态在其他量子算法中的等级可以迅速增加,使高效的模拟更加困难。在某种程度上,这种困难反映了量子计算机相对于古典计算机的优势或优越性。作为结果,理解一种低级的量子算法结构使我们能够从量子计算机中大大受益。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
200+阅读 · 2020年9月1日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
障碍和触碰期权的定价
平均机器
31+阅读 · 2018年12月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【仿真】实际工程中常见的CAE有限元仿真分析
产业智能官
3+阅读 · 2018年9月18日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2020年4月17日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
200+阅读 · 2020年9月1日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
障碍和触碰期权的定价
平均机器
31+阅读 · 2018年12月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【仿真】实际工程中常见的CAE有限元仿真分析
产业智能官
3+阅读 · 2018年9月18日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员