We present an algorithm to compute all factorizations into linear factors of univariate polynomials over the split quaternions, provided such a factorization exists. Failure of the algorithm is equivalent to non-factorizability for which we present also geometric interpretations in terms of rulings on the quadric of non-invertible split quaternions. However, suitable real polynomial multiples of split quaternion polynomials can still be factorized and we describe how to find these real polynomials. Split quaternion polynomials describe rational motions in the hyperbolic plane. Factorization with linear factors corresponds to the decomposition of the rational motion into hyperbolic rotations. Since multiplication with a real polynomial does not change the motion, this decomposition is always possible. Some of our ideas can be transferred to the factorization theory of motion polynomials. These are polynomials over the dual quaternions with real norm polynomial and they describe rational motions in Euclidean kinematics. We transfer techniques developed for split quaternions to compute new factorizations of certain dual quaternion polynomials.


翻译:我们提出一种算法,将所有因数计算成单四位数的线性系数,条件是存在这种系数。算法的失败相当于非因数性,对此,我们也提出非因数性解释,在非不可逆的分四位数的四分法四分法四分法的四分法方面,我们对此也提出了几何解释。然而,分离四分制多元多义的恰当真实的多元多重因素仍然可以被计算成乘数,我们描述如何找到这些真正的多元顶数。二重四分制多元数对双曲平面上的合理运动进行描述。线性因素与将理性运动分解为双曲旋转的分解相对应。由于与真正的多元性运动的乘数并不会改变运动,这种分解总是可能的。我们的一些想法可以转移到运动的因数理论中。这些是带有真正规范的多元性双重顶数,它们描述超双向双向运动的理性运动。与线性因素对应,与将理性运动的分解为双向运动旋转。我们开发了两极制基数的多元因素的多元化方法。我们为分裂制的多元化了某些基数制制的多元化系数。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
普林斯顿大学经典书《在线凸优化导论》,178页pdf
专知会员服务
184+阅读 · 2020年2月3日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
11+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员