The \textit{Central Limit Theorem (CLT)} is at the heart of a great deal of applied problem-solving in statistics and data science, but the theorem is silent on an important implementation issue: \textit{how much data do you need for the CLT to give accurate answers to practical questions?} Here we examine several approaches to addressing this issue -- along the way reviewing the history of this problem over the last 290 years -- and we illustrate the calculations with case-studies from finite-population sampling and gambling. A variety of surprises emerge.
翻译:\ textit{ Central Limit Theorem (CLT)} 是统计和数据科学中大量应用解决问题的核心, 但理论却对一个重要的执行问题保持沉默:\ textit{ 你需要多少数据才能让 CLT 准确回答实际问题?}我们在这里研究解决这个问题的几种方法-- 沿着回顾过去290年来这个问题的历史-- 我们用有限人口抽样和赌博的案例研究来说明计算。 出现了各种惊喜。