In previous work by this author, the screening paradox - the loss of predictive power of screening tests over time $t$ - was mathematically formalized using Bayesian theory. Where $J$ is Youden's statistic, $b$ is the specificity of the screening test and $\phi$ is the prevalence of disease, the ratio of positive predictive values at subsequent time $k$, $\rho(\phi_{k})$, over the original $\rho(\phi_{0})$ at $t_0$ is given by: $\zeta(\phi_{0},k) = \frac{\rho(\phi_{k})}{\rho(\phi_{0})} =\frac{\phi_k(1-b)+J\phi_0\phi_k}{\phi_0(1-b)+J\phi_0\phi_k}$ Herein, we modify the traditional Kermack-McKendrick SIR Model to include the fluctuation of the positive predictive value $\rho(\phi)$ (PPV) of a screening test over time as a function of the prevalence threshold $\phi_e$. We term this modified model the SIR-P model. Where a = sensitivity, b = specificity, $S$ = number susceptible, $I$ = number infected, $R$ = number recovered/dead, $\beta$ = infectious rate, $\gamma$ = recovery rate, and $N$ is the total number in the population, the predictive value $\rho(\phi,t)$ over time $t$ is given by: $\rho(\phi,t) = \frac{a[\frac{\beta IS}{N}-\gamma I]}{ a[\frac{\beta IS}{N}-\gamma I]+(1-b)(1-[\frac{\beta IS}{N}-\gamma I])}$ Otherwise stated: $\rho(\phi,t) = \frac{a\frac{dI}{dt}}{ a\frac{dI}{dt}+(1-b)(1-\frac{dI}{dt})}$ where $\frac{dI}{dt}$ is the fluctuation of infected individuals over time $t$.
翻译:在这位作者的先前工作中, 筛选悖论 - 在一段时间内 {cl=0} 丧失了检测的预测能力 $[I- 美元], 使用Bayesian 理论在数学上正式化了。 如果美元是Youden的统计, $b$ 是筛选测试的特性, $ 美元是疾病的流行程度, 之后的正预测值比 $k$, $rho( $) $( ⁇ ( ⁇ ) $ ($) 美元 (美元) : zeta( ⁇ ) 美元, k) = freal= 美元( 美元) ; = 美元= 美元( 美元) = Sphi_k( 1- b) + J\ fi_ 0 (b) 美元 + J\\\ fi_ k} 美元 (美元) 美元 美元 (c) 美元 (我们修改了传统的 kemack- mark SIR 模型的波动值 美元= 美元 (PPV= 美元) a modescremodeal a modeal modeal- modeal mode a mode.