Real-time safety systems are crucial components of intelligent vehicles. This paper introduces a prediction-based collision risk assessment approach on highways. Given a point mass vehicle dynamics system, a stochastic forward reachable set considering two-dimensional motion with vehicle state probability distributions is firstly established. We then develop an acceleration prediction model, which provides multi-modal probabilistic acceleration distributions to propagate vehicle states. The collision probability is calculated by summing up the probabilities of the states where two vehicles spatially overlap. Simulation results show that the prediction model has superior performance in terms of vehicle motion position errors, and the proposed collision detection approach is agile and effective to identify the collision in cut-in crash events.
翻译:实时安全系统是智能车辆的关键组成部分。 本文在高速公路上引入了一种基于预测的碰撞风险评估方法。 在使用一个点质量车辆动态系统的情况下,首先建立了一套考虑到车辆状态概率分布的二维运动的可探测的前方可达集。 然后我们开发了一个加速预测模型,该模型提供多种模式的加速加速速度分布,以传播车辆状态。 碰撞概率是通过总结两辆车辆空间重叠状态的概率来计算的。 模拟结果显示,预测模型在车辆运动位置错误方面表现优异,而拟议的碰撞探测方法灵活而有效,可以识别切入碰撞事件的碰撞。