It has become cognitive inertia to employ cross-entropy loss function in classification related tasks. In the untargeted attacks on graph structure, the gradients derived from the attack objective are the attacker's basis for evaluating a perturbation scheme. Previous methods use negative cross-entropy loss as the attack objective in attacking node-level classification models. However, the suitability of the cross-entropy function for constructing the untargeted attack objective has yet been discussed in previous works. This paper argues about the previous unreasonable attack objective from the perspective of budget allocation. We demonstrate theoretically and empirically that negative cross-entropy tends to produce more significant gradients from nodes with lower confidence in the labeled classes, even if the predicted classes of these nodes have been misled. To free up these inefficient attack budgets, we propose a simple attack model for untargeted attacks on graph structure based on a novel attack objective which generates unweighted gradients on graph structures that are not affected by the node confidence. By conducting experiments in gray-box poisoning attack scenarios, we demonstrate that a reasonable budget allocation can significantly improve the effectiveness of gradient-based edge perturbations without any extra hyper-parameter.


翻译:已经认知到在分类相关任务中采取交叉熵损失函数成为了一种惯性。在图结构的未定向攻击中,攻击者从攻击目标中得出的梯度是评价扰动方案的基础。之前的方法使用负交叉熵损失作为攻击目标来攻击基于节点的分类模型。然而,之前的工作中还没有讨论究竟使用交叉熵函数来构建未定向攻击目标是否合适。本文从预算分配的角度论证了之前不合理的攻击目标。我们理论上和实验上证明,即使这些节点的预测类别已被误导,使用负交叉熵往往会产生更大的梯度,这些梯度来自于标记类别置信度较低的节点。为了释放出这些低效的攻击预算,我们提出了一种基于新型攻击目标的简单攻击模型,该攻击目标在图结构上生成的未加权的梯度不会受节点置信度的影响。通过在灰盒毒化攻击场景下的实验验证,我们证明了合理的预算分配可以显著提高基于梯度扰动的边缘的攻击效果,而不需要额外的超参数。

0
下载
关闭预览

相关内容

图神经网络黑盒攻击近期进展
专知会员服务
18+阅读 · 2022年10月14日
ATMOL:利用对比学习预训练模型预测分子性质
专知会员服务
11+阅读 · 2022年8月14日
【AAAI2022】学会学习可迁移攻击
专知会员服务
15+阅读 · 2021年12月15日
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
66+阅读 · 2022年4月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员