Sensor nodes in a wireless sensor network (WSN) for security surveillance applications should preferably be small, energy-efficient, and inexpensive with in-sensor computational abilities. An appropriate data processing scheme in the sensor node reduces the power dissipation of the transceiver through the compression of information to be communicated. This study attempted a simulation-based analysis of human footstep sound classification in natural surroundings using simple time-domain features. The spiking neural network (SNN), a computationally low-weight classifier derived from an artificial neural network (ANN), was used to classify acoustic sounds. The SNN and required feature extraction schemes are amenable to low-power subthreshold analog implementation. The results show that all analog implementations of the proposed SNN scheme achieve significant power savings over the digital implementation of the same computing scheme and other conventional digital architectures using frequency-domain feature extraction and ANN-based classification. The algorithm is tolerant of the impact of process variations, which are inevitable in analog design, owing to the approximate nature of the data processing involved in such applications. Although SNN provides low-power operation at the algorithm level itself, ANN to SNN conversion leads to an unavoidable loss of classification accuracy of ~5%. We exploited the low-power operation of the analog processing SNN module by applying redundancy and majority voting, which improved the classification accuracy, taking it close to the ANN model.
翻译:用于安全监视应用的无线传感器网络中传感器节点的传感器节点最好应当是小型的、节能的、廉价的、具有感应器计算能力的小型、节能的、低廉且具有感应器计算能力。传感器节点中的适当数据处理方案通过压缩信息来减少收发器的耗电量。这项研究试图利用简单的时间-地貌特征和ANN的分类,对自然环境中的人类脚步声分类进行模拟分析;由人工神经网络(ANN)产生的计算性低重量分级器神经网络(SNN)被用来对声响进行分类。SNN和所需地物提取计划适合低功率的低功率低功率低功率亚值执行。虽然SNNN计划的所有模拟实施都通过数字实施同一计算计划和其他传统数字结构,利用频率-地貌特征提取和以ANNE为基础的分类,实现了显著的节能节省力。由于此类应用中的数据处理的近似性质,在模拟设计中是不可避免的。虽然SNNNNR将低功率操作的精度转换为S-NNA级的精度的精度,但S-NNNNAS级的精度的精度操作在S级的精度的精度的精度操作本身的精度转换为S-MLA-CLA-CLA-CLA-CLA-CL的精度的精度的精度的精度的精度的精度的精度的精度,通过S-CLA-CLA-CLA-CLDLLLILLLA到S的精度操作本身的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度,我们的精度的精度的精度的精度的精度的精度,我们的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度