Deep regression models typically learn in an end-to-end fashion and do not explicitly try to learn a regression-aware representation. Their representations tend to be fragmented and fail to capture the continuous nature of regression tasks. In this paper, we propose Supervised Contrastive Regression (SupCR), a framework that learns a regression-aware representation by contrasting samples against each other based on their target distance. SupCR is orthogonal to existing regression models, and can be used in combination with such models to improve performance. Extensive experiments using five real-world regression datasets that span computer vision, human-computer interaction, and healthcare show that using SupCR achieves the state-of-the-art performance and consistently improves prior regression baselines on all datasets, tasks, and input modalities. SupCR also improves robustness to data corruptions, resilience to reduced training data, performance on transfer learning, and generalization to unseen targets.


翻译:深回归模型通常以端到端的方式学习,并且没有明确地尝试学习回归意识代表法。它们的表述方式往往支离破碎,无法捕捉回归任务的持续性质。 在本文中,我们提出监督反回归(SupCR)(SupCR)(SupCR)(SupCR)(SupCR)(SupCR)(SupcR)(Supb)(SupbCR)(Supb)(Supb)(Supb)(Supb))(Supb)(Supb)(Supb) (Supb) (S) (Supb) (Supb) (Sp) (Sp) (SupCR) ) (Supb) (Supb) (Sp) (Sp) (Supb) (Supb) (S) (Supb) ) (Supread) (Supret) ) ) (Suptional) 。 Spulational) (Spulational) (Sulation (Sulation) (Sulation) (Spat) (Spat) (Spat) (Spat) 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员