We study the query version of constrained minimum link paths between two points inside a simple polygon $P$ with $n$ vertices such that there is at least one point on the path, visible from a query point. The method is based on partitioning $P$ into a number of faces of equal link distance from a point, called a link-based shortest path map (SPM). Initially, we solve this problem for two given points $s$, $t$ and a query point $q$. Then, the proposed solution is extended to a general case for three arbitrary query points $s$, $t$ and $q$. In the former, we propose an algorithm with $O(n)$ preprocessing time. Extending this approach for the latter case, we develop an algorithm with $O(n^3)$ preprocessing time. The link distance of a $q$-$visible$ path between $s$, $t$ as well as the path are provided in time $O(\log n)$ and $O(m+\log n)$, respectively, for the above two cases, where $m$ is the number of links.
翻译:我们研究了在简单多边方元内两点之间、以美元为顶点、以美元和以美元为顶点的受限最低链接路径的查询版本,这样在路径上至少有一个点,可以从查询点看得出来。该方法基于将美元分割成一个点的相等连接距离的若干面,称为基于链接的最短路径图(SPM)。最初,我们为两个给定点解决了这个问题,一个是美元,一个是美元,另一个是美元。然后,拟议的解决方案扩大到三个任意查询点的一般情况,一个是美元,一个是美元和美元。在前者,我们建议用美元预处理时间进行算法。在后一种情况下,我们为后一种情况制定一个以美元(n)为顶点的算法,一个是美元(n)预处理时间。在美元为美元、美元和美元之间以美元为代表的路径的连接点,在前两个案件中,以美元为美元和美元为以美元为底点。