A Magnetic Resonance Imaging (MRI) exam typically consists of the acquisition of multiple MR pulse sequences, which are required for a reliable diagnosis. Each sequence can be parameterized through multiple acquisition parameters affecting MR image contrast, signal-to-noise ratio, resolution, or scan time. With the rise of generative deep learning models, approaches for the synthesis of MR images are developed to either synthesize additional MR contrasts, generate synthetic data, or augment existing data for AI training. However, current generative approaches for the synthesis of MR images are only trained on images with a specific set of acquisition parameter values, limiting the clinical value of these methods as various sets of acquisition parameter settings are used in clinical practice. Therefore, we trained a generative adversarial network (GAN) to generate synthetic MR knee images conditioned on various acquisition parameters (repetition time, echo time, image orientation). This approach enables us to synthesize MR images with adjustable image contrast. In a visual Turing test, two experts mislabeled 40.5% of real and synthetic MR images, demonstrating that the image quality of the generated synthetic and real MR images is comparable. This work can support radiologists and technologists during the parameterization of MR sequences by previewing the yielded MR contrast, can serve as a valuable tool for radiology training, and can be used for customized data generation to support AI training.
翻译:磁共振成像(MRI)测试通常包括获取多个MR脉冲序列,这是可靠诊断所必需的。每个序列都可以通过影响MR图像对比、信号到噪音比率、分辨率或扫描时间的多重获取参数进行参数参数的参数。随着基因深度学习模型的出现,对MR图像进行合成的方法,既可以合成额外的MR对比、生成合成数据,也可以增加现有的AI培训数据。然而,目前用于合成MR图像的基因化方法仅以带有一套特定获取参数值的图像进行训练,这些方法的临床价值受到限制,因为临床实践中使用了各种组合的获取参数设置。因此,我们训练了一个基因化对抗网络(GAN)来生成合成的MR膝盖图像,这些参数以各种获取参数(重复时间、回声时间、图像方向)为条件。这一方法使我们能够将MMR图像与可调整的图像对比合成。在视觉图象测试中,两位专家误贴了40.5%的真实和合成的MMR图像的标签,表明生成的合成和真实的MS图像的图像的图像质量是可比较的。在临床实践中,这项工作可以支持用于对DRMRML的升级的升级和科技的模型进行分析。