U.S. Nuclear Regulatory Committee (NRC) and U.S. Department of Energy (DOE) initiated a future-focused research project to assess the regulatory viability of machine learning (ML) and artificial intelligence (AI)-driven Digital Twins (DTs) for nuclear applications. Advanced accident tolerant fuel (ATF) is one of the priority focus areas of the DOE/ NRC. DTs have the potential to transform the nuclear energy sector in the coming years by incorporating risk-informed decision-making into the Accelerated Fuel Qualification (AFQ) process for ATF. A DT framework can offer game-changing yet practical and informed solutions to the complex problem of qualifying advanced ATFs. However, novel ATF technology suffers from a couple of challenges, such as (i) Data unavailability; (ii) Lack of data, missing data; and (iii) Model uncertainty. These challenges must be resolved to gain the trust in DT framework development. In addition, DT-enabling technologies consist of three major areas: (i) modeling and simulation (M&S), covering uncertainty quantification (UQ), sensitivity analysis (SA), data analytics through ML/AI, physics-based models, and data-informed modeling, (ii) Advanced sensors/instrumentation, and (iii) Data management. UQ and SA are important segments of DT-enabling technologies to ensure trustworthiness, which need to be implemented to meet the DT requirement. Considering the regulatory standpoint of the modeling and simulation (M&S) aspect of DT, UQ and SA are paramount to the success of DT framework in terms of multi-criteria and risk-informed decision-making. In this study, the adaptability of polynomial chaos expansion (PCE) based UQ/SA in a non-intrusive method in BISON was investigated to ensure M&S aspects of the AFQ for ATF. This study introduces the ML-based UQ and SA methods while exhibiting actual applications to the finite element-based nuclear fuel performance code.


翻译:US. 核监管委员会(核监委)和美国能源部(能源部)启动了一个以未来为重点的研究项目,以评估核应用机器学习(ML)和人工智能驱动的数字双体(DTs)的监管可行性。高级事故容忍燃料(ATF)是DO/NRC的优先重点领域之一。DT有可能在未来几年里通过将风险知情决策纳入加速燃料认证的燃料资格(AFQ)进程来改造核能部门。 一项DT框架可以为符合资格的高级ATF这一复杂问题提供改变游戏的、实际的和知情的解决方案。然而,新的ATF技术面临若干挑战,如:(一) 数据缺乏;(二) 缺乏、数据缺失;(三) 模型不确定性。必须解决这些挑战,以获得对DT框架开发的信任。 此外,基于DT的测试技术包括三个主要领域:(一) 模型和模拟(M&S) 包括不确定性量化(UQ)、敏感性分析(SA)、数据分析(SA) 数据管理部分,通过数据测试(SDDR) 数据测试(S) 数据测试(S) 基础研究(SAL) 基础研究(IL)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员