In wireless communications systems, the user equipment (UE) transmits a random access preamble sequence to the base station (BS) to be detected and synchronized. In standardized cellular communications systems Zadoff-Chu sequences has been proposed due to their constant amplitude zero autocorrelation (CAZAC) properties. The conventional approach is to use matched filters to detect the sequence. Sequences arrived from different antennas and time instances are summed up to reduce the noise variance. Since the knowledge of the channel is unknown at this stage, a coherent combining scheme would be very difficult to implement. In this work, we leverage the system design knowledge and propose a neural network (NN) sequence detector and timing advanced estimator. We do not replace the whole process of preamble detection by a NN. Instead, we propose to use NN only for \textit{blind} coherent combining of the signals in the detector to compensate for the channel effect, thus maximize the signal to noise ratio. We have further reduced the problem's complexity using Kronecker approximation model for channel covariance matrices, thereby, reducing the size of required NN. The analysis on timing advanced estimation and sequences detection has been performed and compared with the matched filter baseline.


翻译:在无线通信系统中,用户设备(UE)向基站(BS)传送随机访问前言序列,以便检测和同步。在标准化的蜂窝通信系统(Zadoff-Chu)中,提出了Zadoff-Chu序列,原因是其常态振幅零自动反光关系(CAZAC)特性。常规方法是使用匹配的过滤器来检测序列。从不同天线和时间实例中得出的序列被归结,以减少噪音差异。由于目前尚不知道该频道的知识,因此很难执行一个连贯的组合计划。在这项工作中,我们利用系统设计知识,并提议一个神经网络(NNN)序列探测器和时间高级天文显示器。我们并不用NNN取代整个序言探测过程。相反,我们提议只使用NN(NN)来对探测器中的信号进行匹配,以弥补频道效应,从而最大限度地实现噪音比率信号。我们进一步降低了问题的复杂性,使用Kronecker近似模型来测量频道的焦量矩阵矩阵,从而缩小了所需的测试和过滤器序列的大小。我们进行了先进的分析。

0
下载
关闭预览

相关内容

CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
60+阅读 · 2020年3月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
3+阅读 · 2018年6月14日
VIP会员
相关资讯
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员