We present a method to derive new explicit expressions for bidiagonal decompositions of Vandermonde and related matrices such as the (q-, h-) Bernstein-Vandermonde ones, among others. These results generalize the existing expressions for nonsingular matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above classes, the new decompositions can be computed efficiently and to high relative accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g., eigenvalue computation) can also be performed efficiently and to high relative accuracy.
翻译:我们提出了一个方法,用于为Vandermonde的外形分解及相关矩阵,例如(q-,h-) Bernstein-Vandermonde 等(q-,h-) Bernstein-Vandermonde 等)的外形分解产生新的明确表达方式,这些结果将非星体矩阵的现有表达方式概括为任意等级矩阵;对于上述等级的完全非阴性矩阵,新的分解方式可以有效计算,在浮动点算术中可以达到高相对精度的成分。反过来,矩阵计算(例如,egenvalue 计算)也可以高效和高相对精度进行。