A core challenge for superconducting quantum computers is to scale up the number of qubits in each processor without increasing noise or cross-talk. Distributed quantum computing across small qubit arrays, known as chiplets, can address these challenges in a scalable manner. We propose a chiplet architecture over microwave links with potential to exceed monolithic performance on near-term hardware. Our methods of modeling and evaluating the chiplet architecture bridges the physical and network layers in these processors. We find evidence that distributing computation across chiplets may reduce the overall error rates associated with moving data across the device, despite higher error figures for transfers across links. Preliminary analyses suggest that latency is not substantially impacted, and that at least some applications and architectures may avoid bottlenecks around chiplet boundaries. In the long-term, short-range networks may underlie quantum computers just as local area networks underlie classical datacenters and supercomputers today.
翻译:超导量子计算机的核心挑战是如何在不增加噪音或交叉谈话的情况下扩大每个处理器中的qubit数量。 在小qubit阵列(称为花栗鼠)中分布量计算可以以可伸缩的方式应对这些挑战。 我们提议对微波链路建立一个芯片结构,其潜力超过近期硬件的单板性能。 我们的芯片结构建模和评估方法将这些处理器中的物理和网络层连接起来。 我们发现有证据表明,在切片之间分配计算可能会降低跨设备移动数据的总体误差率,尽管跨设备传输的误差数字较高。 初步分析表明,延度没有受到重大影响,至少一些应用和结构可以避免在芯片边界上的瓶颈。 在长期的短期网络中,量子计算机可能与今天的古典数据中心和超级计算机的局域网络一样成为量子计算机的基础。