Outcome estimation of treatments for target individuals is an important foundation for decision making based on causal relations. Most existing outcome estimation methods deal with binary or multiple-choice treatments; however, in some applications, the number of treatments can be significantly large, while the treatments themselves have rich information. In this study, we considered one important instance of such cases: the outcome estimation problem of graph-structured treatments such as drugs. Owing to the large number of possible treatments, the counterfactual nature of observational data that appears in conventional treatment effect estimation becomes more of a concern for this problem. Our proposed method, GraphITE (pronounced "graphite") learns the representations of graph-structured treatments using graph neural networks while mitigating observation biases using Hilbert-Schmidt Independence Criterion regularization, which increases the independence of the representations of the targets and treatments. Experiments on two real-world datasets show that GraphITE outperforms baselines, especially in cases with a large number of treatments.


翻译:对目标个人治疗结果进行估计是基于因果关系的决策的重要基础。大多数现有结果估计方法涉及二进制或多种选择治疗;然而,在某些应用中,治疗数量可能非常大,而治疗本身则有丰富的信息。在本研究中,我们考虑了这类案例的一个重要实例:如药物等图表结构化治疗的结果估计问题。由于可能治疗数量众多,常规治疗效果估计中出现的观测数据的反事实性质更引起对这一问题的关注。我们拟议的方法,GreatITE(已宣布的“绘图”)利用图象神经网络了解图表结构治疗的表示,同时利用Hilbert-Schmidt独立性标准规范来减轻观察偏差,这提高了目标和治疗形式的独立性。关于两个真实世界数据集的实验表明,GreatITE超越了基线,特别是在大量治疗的情况下。

0
下载
关闭预览

相关内容

可持续发展进行时跨越数字化分水岭,60页pdf
专知会员服务
13+阅读 · 2021年10月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
零样本图像分类综述 : 十年进展
专知会员服务
128+阅读 · 2019年11月16日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员