Modelling disease progression of iron deficiency anaemia (IDA) following oral iron supplement prescriptions is a prerequisite for evaluating the cost-effectiveness of oral iron supplements. Electronic health records (EHRs) from the Clinical Practice Research Datalink (CPRD) provide rich longitudinal data on IDA disease progression in patients registered with 663 General Practitioner (GP) practices in the UK, but they also create challenges in statistical analyses. First, the CPRD data are clustered at multi-levels (i.e., GP practices and patients), but their large volume makes it computationally difficult to implement estimation of standard random effects models for multi-level data. Second, observation times in the CPRD data are irregular and could be informative about the disease progression. For example, shorter/longer gap times between GP visits could be associated with deteriorating/improving IDA. Existing methods to address informative observation times are mostly based on complex joint models, which adds more computational burden. To tackle these challenges, we develop a computationally efficient approach to modelling disease progression with EHRs data while accounting for variability at multi-level clusters and informative observation times. We apply the proposed method to the CPRD data to investigate IDA improvement and treatment intolerance following oral iron prescriptions in primary care of the UK.
翻译:口服铁补充处方后,铁质贫血(IDA)的病变模型(IDA)是评价口服铁补充处方成本效益的先决条件。临床实践研究数据链接(CPRAD)的电子健康记录(EHRs)提供了英国663个全科医生(GP)做法登记的病人的IDA病变迁的丰富纵向数据,但也给统计分析带来了挑战。首先,CPRD数据集中在多层次(即,GP做法和病人),但其数量之大,使得难以计算对多层次数据的标准随机效应模型进行估计。第二,CPRA数据中的观察时间不定期,可能提供有关疾病变迁的信息。例如,GP访问之间较短/更长/更长的间隔时间可能与GP访问的恶化/改进IDA有关。现有处理信息观察时间的方法大多基于复杂的联合模型,这增加了计算负担。为应对这些挑战,我们制定了一种计算高效的方法,用EHR数据模拟疾病变异性病变模式和信息化观察时间。我们采用拟议的CRDA治疗方法来调查ICPRA的治疗方法。