We propose the novel augmented Gaussian random field (AGRF), which is a universal framework incorporating the data of observable and derivatives of any order. Rigorous theory is established. We prove that under certain conditions, the observable and its derivatives of any order are governed by a single Gaussian random field, which is the aforementioned AGRF. As a corollary, the statement "the derivative of a Gaussian process remains a Gaussian process" is validated, since the derivative is represented by a part of the AGRF. Moreover, a computational method corresponding to the universal AGRF framework is constructed. Both noiseless and noisy scenarios are considered. Formulas of the posterior distributions are deduced in a nice closed form. A significant advantage of our computational method is that the universal AGRF framework provides a natural way to incorporate arbitrary order derivatives and deal with missing data. We use four numerical examples to demonstrate the effectiveness of the computational method. The numerical examples are composite function, damped harmonic oscillator, Korteweg-De Vries equation, and Burgers' equation.
翻译:我们提议增加高斯随机字段(AGRF),这是一个包含任何顺序的可观测数据和衍生物数据的普遍框架。严格理论已经确立。我们证明,在某些条件下,任何顺序的可观测及其衍生物都由一个单一高斯随机字段(即上述的AGRF)管理。作为推论,“高斯过程的衍生物仍是一个高斯过程”的表述得到验证,因为衍生物由AGRF的一部分代表。此外,还构建了一种与通用的AGRF框架相对应的计算方法。无噪音和噪音情景都得到了考虑。后方分布的公式以良好的封闭形式推论。我们计算方法的一个重大优势是,通用的AGRF框架提供了一种自然的方式,将任意顺序衍生物纳入并处理缺失的数据。我们用四个数字示例来证明计算方法的有效性。数字实例是复合功能、宽度的调和振动振动振动物、Kortewe-De Vrie方程式和Burgers的等式。