Background and purpose: Heart disease has been one of the most important causes of death in the last 10 years, so the use of classification methods to diagnose and predict heart disease is very important. If this disease is predicted before menstruation, it is possible to prevent high mortality of the disease and provide more accurate and efficient treatment methods. Materials and Methods: Due to the selection of input features, the use of basic algorithms can be very time-consuming. Reducing dimensions or choosing a good subset of features, without risking accuracy, has great importance for basic algorithms for successful use in the region. In this paper, we propose an ensemble-genetic learning method using wrapper feature reduction to select features in disease classification. Findings: The development of a medical diagnosis system based on ensemble learning to predict heart disease provides a more accurate diagnosis than the traditional method and reduces the cost of treatment. Conclusion: The results showed that Thallium Scan and vascular occlusion were the most important features in the diagnosis of heart disease and can distinguish between sick and healthy people with 97.57% accuracy.


翻译:背景和目的:心脏病是过去10年来最重要的死亡原因之一,因此使用分类方法诊断和预测心脏病非常重要。如果在月经前预测出这一疾病,则有可能预防该疾病的高死亡率,并提供更准确有效的治疗方法。材料和方法:由于选择了输入特征,使用基本算法可能非常费时。降低尺寸或选择一大批特征对于本区域成功使用的基本算法非常重要,因此,使用分类方法诊断和预测心脏病非常重要。在本文中,我们建议采用一种混合基因学习方法,使用包装特征减少法来选择疾病分类的特征。结果:基于共同学习来预测心脏病的医疗诊断系统的发展提供了比传统方法更准确的诊断,并降低了治疗费用。结论:结果显示,Tallium扫描和血管隔离是诊断心脏病的最重要特征,可以将病人和健康者区分为97.57%的准确度。

1
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2019年4月15日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员