Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring annotated anomalous data during training. Often, this is achieved by learning a data distribution of normal samples and detecting anomalies as regions in the image which deviate from this distribution. Most current state-of-the-art methods use latent variable generative models operating directly on the images. However, generative models have been shown to mostly capture low-level features, s.a. pixel-intensities, instead of rich semantic features, which also applies to their representations. We circumvent this problem by proposing CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task. By utilizing the representations of contrastive learning, we aim to fix the over-fixation on low-level features and learn more semantic-rich representations. Our experiments on anomaly detection and localization tasks using three distinct evaluation datasets show that 1) contrastive representations are superior to representations of generative latent variable models and 2) the CRADL framework shows competitive or superior performance to state-of-the-art.
翻译:在医学成像中,未经监督的异常检测旨在探测和本地化任意异常现象,而不需要附加附加说明的异常数据。通常,这是通过学习正常样本的数据分布和发现异常现象来实现的,作为不同于这种分布的图像的区域,目前大多数最先进的方法使用直接在图像上运行的潜伏可变变变化模型。然而,基因模型显示,多数捕捉到低层次特征,即 s.a. 象素密度,而不是丰富的语义特征,这些特征也适用于它们的表现。我们建议CRADL,其核心思想是直接在以对比性托词-task为对象的摄像器的低维代表空间中模拟正常样本的分布,从而绕过这一问题。我们的目标是利用对比性学习的表达方式,对低层次特征进行过度固定,并学习更多的语义丰富的表达方式。我们利用三个不同的评价数据集对异常检测和本地化任务进行的实验表明,1)对比性表现优于基因化潜在变异模型的展示,2)CRADL框架显示竞争或优劣表现至状态。