Given a symmetric matrix $A$, we show from the simple sketch $GAG^T$, where $G$ is a Gaussian matrix with $k = O(1/\epsilon^2)$ rows, that there is a procedure for approximating all eigenvalues of $A$ simultaneously to within $\epsilon \|A\|_F$ additive error with large probability. Unlike the work of (Andoni, Nguyen, SODA, 2013), we do not require that $A$ is positive semidefinite and therefore we can recover sign information about the spectrum as well. Our result also significantly improves upon the sketching dimension of recent work for this problem (Needell, Swartworth, Woodruff FOCS 2022), and in fact gives optimal sketching dimension. Our proof develops new properties of singular values of $GA$ for a $k \times n$ Gaussian matrix $G$ and an $n \times n$ matrix $A$ which may be of independent interest. Additionally we achieve tight bounds in terms of matrix-vector queries. Our sketch can be computed using $O(1/\epsilon^2)$ matrix-vector multiplies, and by improving on lower bounds for the so-called rank estimation problem, we show that this number is optimal even for adaptive matrix-vector queries.
翻译:---
给定对称矩阵 $A$,我们通过简单的草图 $GAG^T$(其中 $G$ 是具有 $k=O(1/\epsilon^2)$ 行的高斯矩阵),展示了一种方法,可以在大概率下将 $A$ 的所有特征值同时近似到 $\epsilon \|A\|_F$ 添加误差以内。与 (Andoni, Nguyen, SODA, 2013) 的工作不同,我们不要求 $A$ 是半正定的,因此我们也可以恢复关于谱的符号信息。我们的结果还显著提高了最近为此问题的草图维度的工作(Needell, Swartworth, Woodruff FOCS 2022),并且实际上达到了最优的草图维度。我们的证明开发了高斯矩阵 $G$ 和 $n\times n$ 矩阵 $A$ 的 $k \times n$ 奇异值的新性质,这可能是独立的利益点。此外,我们通过对所谓的秩估计问题的下界进行改进,还实现了关于矩阵-向量查询的紧密边界。我们的草图可以使用 $O(1/\epsilon^2)$ 矩阵-向量乘法计算,并且通过改进自适应矩阵-向量查询的下界,我们表明即使对于自适应矩阵-向量查询,这个数字也是最优的。