Given a symmetric matrix $A$, we show from the simple sketch $GAG^T$, where $G$ is a Gaussian matrix with $k = O(1/\epsilon^2)$ rows, that there is a procedure for approximating all eigenvalues of $A$ simultaneously to within $\epsilon \|A\|_F$ additive error with large probability. Unlike the work of (Andoni, Nguyen, SODA, 2013), we do not require that $A$ is positive semidefinite and therefore we can recover sign information about the spectrum as well. Our result also significantly improves upon the sketching dimension of recent work for this problem (Needell, Swartworth, Woodruff FOCS 2022), and in fact gives optimal sketching dimension. Our proof develops new properties of singular values of $GA$ for a $k \times n$ Gaussian matrix $G$ and an $n \times n$ matrix $A$ which may be of independent interest. Additionally we achieve tight bounds in terms of matrix-vector queries. Our sketch can be computed using $O(1/\epsilon^2)$ matrix-vector multiplies, and by improving on lower bounds for the so-called rank estimation problem, we show that this number is optimal even for adaptive matrix-vector queries.


翻译:--- 给定对称矩阵 $A$,我们通过简单的草图 $GAG^T$(其中 $G$ 是具有 $k=O(1/\epsilon^2)$ 行的高斯矩阵),展示了一种方法,可以在大概率下将 $A$ 的所有特征值同时近似到 $\epsilon \|A\|_F$ 添加误差以内。与 (Andoni, Nguyen, SODA, 2013) 的工作不同,我们不要求 $A$ 是半正定的,因此我们也可以恢复关于谱的符号信息。我们的结果还显著提高了最近为此问题的草图维度的工作(Needell, Swartworth, Woodruff FOCS 2022),并且实际上达到了最优的草图维度。我们的证明开发了高斯矩阵 $G$ 和 $n\times n$ 矩阵 $A$ 的 $k \times n$ 奇异值的新性质,这可能是独立的利益点。此外,我们通过对所谓的秩估计问题的下界进行改进,还实现了关于矩阵-向量查询的紧密边界。我们的草图可以使用 $O(1/\epsilon^2)$ 矩阵-向量乘法计算,并且通过改进自适应矩阵-向量查询的下界,我们表明即使对于自适应矩阵-向量查询,这个数字也是最优的。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员