Recent years have witnessed the dramatic growth of Internet video traffic, where the video bitstreams are often compressed and delivered in low quality to fit the streamer's uplink bandwidth. To alleviate the quality degradation, it comes the rise of Neural-enhanced Video Streaming (NVS), which shows great prospects to recover low-quality videos by mostly deploying neural super-resolution (SR) on the media server. Despite its benefit, we reveal that current mainstream works with SR enhancement have not achieved the desired rate-distortion trade-off between bitrate saving and quality restoration, due to: (1) overemphasizing the enhancement on the decoder side while omitting the co-design of encoder, (2) inherent limited restoration capacity to generate high-fidelity perceptual details, and (3) optimizing the compression-and-restoration pipeline from the resolution perspective solely, without considering color bit-depth. Aiming at overcoming these limitations, we are the first to conduct the encoder-decoder (i.e., codec) synergy by leveraging the visual-synthesis genius of diffusion models. Specifically, we present the Codec-aware Diffusion Modeling (CaDM), a novel NVS paradigm to significantly reduce streaming delivery bitrate while holding pretty higher restoration capacity over existing methods. First, CaDM improves the encoder's compression efficiency by simultaneously reducing resolution and color bit-depth of video frames. Second, CaDM provides the decoder with perfect quality enhancement by making the denoising diffusion restoration aware of encoder's resolution-color conditions. Evaluation on public cloud services with OpenMMLab benchmarks shows that CaDM significantly saves streaming bitrate by a nearly 100 times reduction over vanilla H.264 and achieves much better recovery quality (e.g., FID of 0.61) over state-of-the-art neural-enhancing methods.


翻译:近些年来,互联网视频流量急剧增长, 视频位流往往被压缩, 且以低质量交付, 以适应流流的上行带宽。 为了缓解质量退化, 出现了神经强化视频流(NVS)的崛起, 这显示了通过在媒体服务器上主要部署神经超分辨率(SR)来恢复低质量视频的巨大前景。 尽管它的好处很大, 我们发现, 目前主流中SL的提升并没有在比特节储蓄和质量恢复之间实现理想的速率扭曲交易, 原因是:(1) 过度强调解译器侧的增强,同时忽略了编码器的共同设计,(2) 模型本身有限的恢复能力来产生高真实性视频流细节,(3) 仅仅从解析角度优化压缩和再恢复管道, 而不考虑颜色深度。 为了克服这些限制, 我们首先在比特节节节节节储蓄( e. ccocrc) 上进行电解析的升级, 通过利用视觉变异化机的精度传播, 使得流流流流流的精度降低当前BDDRD的精度交付能力。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2019年11月23日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员