Towards 3D object tracking in point clouds, a novel point-to-box network termed P2B is proposed in an end-to-end learning manner. Our main idea is to first localize potential target centers in 3D search area embedded with target information. Then point-driven 3D target proposal and verification are executed jointly. In this way, the time-consuming 3D exhaustive search can be avoided. Specifically, we first sample seeds from the point clouds in template and search area respectively. Then, we execute permutation-invariant feature augmentation to embed target clues from template into search area seeds and represent them with target-specific features. Consequently, the augmented search area seeds regress the potential target centers via Hough voting. The centers are further strengthened with seed-wise targetness scores. Finally, each center clusters its neighbors to leverage the ensemble power for joint 3D target proposal and verification. We apply PointNet++ as our backbone and experiments on KITTI tracking dataset demonstrate P2B's superiority (~10%'s improvement over state-of-the-art). Note that P2B can run with 40FPS on a single NVIDIA 1080Ti GPU. Our code and model are available at https://github.com/HaozheQi/P2B.
翻译:在点云中向 3D 对象跟踪, 以端到端学习的方式, 提出了一个名为 P2B 的新点到箱网络。 我们的主要想法是首先将3D 搜索区的潜在目标中心本地化, 嵌入目标信息。 然后联合执行点驱动 3D 目标建议和核查。 这样可以避免耗时的 3D 彻底搜索。 具体地说, 我们首先在模板和搜索区分别从点云中抽取种子。 然后, 我们实施点到点的点到点的增强功能, 将模板中的目标线索嵌入搜索区种子中, 并用目标特性来代表它们。 因此, 扩大的搜索区种子通过 Hough 投票将潜在的目标中心重新定位。 这些中心将进一步通过种子目标分数得到增强。 最后, 每一个中心周围的邻居将集合起来, 来利用联合 3D 目标建议和校验的总能力。 我们用 PointNet+ 做我们的骨干和实验 KITTITI 数据集显示 P2B 的优越性( ~ 10% 改善 区域- ) 。 。 注意到 P2B 模式可以通过 HOFPS/ GVIA 10/ GVA 1080 。