Federated Learning (FL) enables numerous participants to train deep learning models collaboratively without exposing their personal, potentially sensitive data, making it a promising solution for data privacy in collaborative training. The distributed nature of FL and unvetted data, however, makes it inherently vulnerable to backdoor attacks: In this scenario, an adversary injects backdoor functionality into the centralized model during training, which can be triggered to cause the desired misclassification for a specific adversary-chosen input. A range of prior work establishes successful backdoor injection in an FL system; however, these backdoors are not demonstrated to be long-lasting. The backdoor functionality does not remain in the system if the adversary is removed from the training process since the centralized model parameters continuously mutate during successive FL training rounds. Therefore, in this work, we propose PerDoor, a persistent-by-construction backdoor injection technique for FL, driven by adversarial perturbation and targeting parameters of the centralized model that deviate less in successive FL rounds and contribute the least to the main task accuracy. An exhaustive evaluation considering an image classification scenario portrays on average $10.5\times$ persistence over multiple FL rounds compared to traditional backdoor attacks. Through experiments, we further exhibit the potency of PerDoor in the presence of state-of-the-art backdoor prevention techniques in an FL system. Additionally, the operation of adversarial perturbation also assists PerDoor in developing non-uniform trigger patterns for backdoor inputs compared to uniform triggers (with fixed patterns and locations) of existing backdoor techniques, which are prone to be easily mitigated.


翻译:联邦学习组织(FL)使许多参与者能够合作培训深层次学习模式,而不会暴露其个人和潜在敏感数据,从而使其成为合作培训中数据隐私的一个有希望的解决办法。但是,FL和未审数据分布式的性质使得它天生容易受到幕后攻击:在这一情景中,对手在培训期间将后门功能注入中央模式,这可能会引发对特定对手选择输入的输入造成预期的错误分类。先前的一系列工作在FL系统中确立了成功的后门注射;然而,这些后门并不证明是长期的。如果在FL连续的培训回合中集中模式参数不断变异,将对手从培训过程中移除,后门功能就不会留在系统中。因此,在这项工作中,我们建议PerDoor为FL提供一种持续的逐道后门注射技术,这种技术在FL连续的回合中偏差较少,并且容易导致主要任务的准确性。 全面评价设想一个图像分类假设方案,在平均的10.5\时间将对手从培训过程中清除前的触发,在FL的后端试验中,我们通过常规的固定的周期,在FL轮中进行长期的周期内进行。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员