In many businesses, and particularly in finance, the behavior of a client might drastically change over time. It is consequently crucial for recommender systems used in such environments to be able to adapt to these changes. In this study, we propose a novel collaborative filtering algorithm that captures the temporal context of a user-item interaction through the users' and items' recent interaction histories to provide dynamic recommendations. The algorithm, designed with issues specific to the financial world in mind, uses a custom neural network architecture that tackles the non-stationarity of users' and items' behaviors. The performance and properties of the algorithm are monitored in a series of experiments on a G10 bond request for quotation proprietary database from BNP Paribas Corporate and Institutional Banking.
翻译:在许多企业,特别是金融企业,客户的行为可能会随着时间而发生巨大变化。 因此,在这种环境中使用的建议系统必须能够适应这些变化。 在这项研究中,我们提议一种新的协作过滤算法,通过用户和项目最近的交互历史,捕捉用户-项目互动的时间背景,以提供动态的建议。 算法的设计以金融界特有的问题为主,它使用一种习惯的神经网络结构,解决用户和项目行为不常态的问题。算法的性能和性质在法国巴黎银行(BNP Paribas)公司和机构银行的G10债券报价专有数据库的一系列实验中受到监督。