This paper addresses recovery of a kernel $\boldsymbol{h}\in \mathbb{C}^{n}$ and a signal $\boldsymbol{x}\in \mathbb{C}^{n}$ from the low-resolution phaseless measurements of their noisy circular convolution $\boldsymbol{y} = \left \rvert \boldsymbol{F}_{lo}( \boldsymbol{x}\circledast \boldsymbol{h}) \right \rvert^{2} + \boldsymbol{\eta}$, where $\boldsymbol{F}_{lo}\in \mathbb{C}^{m\times n}$ stands for a partial discrete Fourier transform ($m<n$), $\boldsymbol{\eta}$ models the noise, and $\lvert \cdot \rvert$ is the element-wise absolute value function. This problem is severely ill-posed because both the kernal and signal are unknown and, in addition, the measurements are phaseless, leading to many $x$-$h$ pairs that correspond to the measurements. Therefore, to guarantee a stable recovery of $\boldsymbol{x}$ and $\boldsymbol{h}$ from $\boldsymbol{y}$, we assume that the kernel $\boldsymbol{h}$ and the signal $\boldsymbol{x}$ lie in known subspaces of dimensions $k$ and $s$, respectively, such that $m\gg k+s$. We solve this problem by proposing a \textit{bli}nd deconvolution algorithm for \textit{pha}seless \textit{su}per-resolution to minimize a non-convex least-squares objective function. The method first estimates a low-resolution version of both signals through a spectral algorithm, which are then refined based upon a sequence of stochastic gradient iterations. We show that our BliPhaSu algorithm converges linearly to a pair of true signals on expectation under a proper initialization that is based on spectral method. Numerical results from experimental data demonstrate perfect recovery of both $h$ and $s$ using our method.
翻译:这张纸将解析 $\ boldsymbol{ h{ h} in\ bathb{ c} 美元和信号 $Boldsymb{x}\ mathb{ C} 美元, 低分辨率的循环测量 $\ boldsymbol{y} = 左转 rver\ boldsymbol{ f} (\ boldsybol{ xxxxx} 美元, 右转 美元=calsyblb} 和 美元; 右轉=xxxx 美元, 右轉=xxxx 美元 美元, 右轉==bxxxxxx 美元, 美元=bluslations dismlations a relate flationformax (m) 美元 美元, 美元=blational_blooks a dismlation a dismoltal=d 美元, 美元, mods dismotions dismax dismax a froism motions dismax 。