Motivated by the immutable nature of Ethereum smart contracts and of their transactions, quite many approaches have been proposed to detect defects and security problems before smart contracts become persistent in the blockchain and they are granted control on substantial financial value. Because smart contracts source code might not be available, static analysis approaches mostly face the challenge of analysing compiled Ethereum bytecode, that is available directly from the official blockchain. However, due to the intrinsic complexity of Ethereum bytecode (especially in jump resolution), static analysis encounters significant obstacles that reduce the accuracy of exiting automated tools. This paper presents a novel static analysis algorithm based on the symbolic execution of the Ethereum operand stack that allows us to resolve jumps in Ethereum bytecode and to construct an accurate control-flow graph (CFG) of the compiled smart contracts. EtherSolve is a prototype implementation of our approach. Experimental results on a significant set of real world Ethereum smart contracts show that EtherSolve improves the accuracy of the execrated CFGs with respect to the state of the art available approaches. Many static analysis techniques are based on the CFG representation of the code and would therefore benefit from the accurate extraction of the CFG. For example, we implemented a simple extension of EtherSolve that allows to detect instances of the re-entrancy vulnerability.


翻译:由于Etheum智能合同及其交易具有不可改变的性质,因此提出了许多办法,以便在智能合同在链条中持久存在之前发现缺陷和安全问题,并允许它们控制大量的金融价值。由于智能合同源代码可能不存在,静态分析方法主要面临着分析编成的Eexeum bytecode的挑战,而Eexium bytecode直接从正式的链条中提供。然而,由于Eexium bytecode(特别是跳跃解)的内在复杂性,静态分析遇到重大障碍,降低了退出的自动工具的准确性。本文件介绍了一种新型静态分析算法,其依据是象征性地执行Etheenum 歌剧堆,从而使我们能够解决Eteenum bytecode的跳跃,并建立一个准确的智能合同控制流程图。EtherSolve是我们方法的原型执行。大量真实世界Etherum 智能合同的实验结果显示,EtherSolve在现有的艺术方法状况方面提高了弹性CFG的准确性。许多静态分析技术都以CFG的精度为基础,因此可以进行精准的提取了ERCG的演示。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
8+阅读 · 2020年10月9日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
24+阅读 · 2020年3月11日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
35+阅读 · 2021年1月27日
Arxiv
8+阅读 · 2020年10月9日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
24+阅读 · 2020年3月11日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年1月29日
Top
微信扫码咨询专知VIP会员