In this paper we present a novel algorithm for automatic performance testing that uses an online variant of the Generative Adversarial Network (GAN) to optimize the test generation process. The objective of the proposed approach is to generate, for a given test budget, a test suite containing a high number of tests revealing performance defects. This is achieved using a GAN to generate the tests and predict their outcome. This GAN is trained online while generating and executing the tests. The proposed approach does not require a prior training set or model of the system under test. We provide an initial evaluation the algorithm using an example test system, and compare the obtained results with other possible approaches. We consider that the presented algorithm serves as a proof of concept and we hope that it can spark a research discussion on the application of GANs to test generation.
翻译:在本文中,我们展示了一种新型自动性能测试算法,该算法使用基因反versarial网络(GAN)的在线变体优化测试生成过程。拟议方法的目标是,在特定测试预算中产生一套包含大量测试显示性能缺陷的测试套件。这是用GAN生成测试并预测其结果而实现的。该GAN在生成和执行测试时经过在线培训。该拟议方法不需要事先培训一套或测试中的系统模型。我们提供了使用示例测试系统对算法进行初步评估,并将获得的结果与其他可能的方法进行比较。我们认为,所提出的算法可以作为概念的证明,我们希望它能够引发关于应用GANs测试生成的研究讨论。