Joint communication and sensing allows the utilization of common spectral resources for communication and localization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR) (i.e., the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals, conventionally used for communication, this paper shows sub-meter precision localization is possible at millimeter wave frequencies. We derive the geometric dilution of precision of a bistatic radar configuration, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors. We develop a 5G NR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with 5G NR waveforms. The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average, the bistatic configuration can achieve a location accuracy of 10.0 cm over a bistatic range of 25 m, which can be further improved by deploying a multistatic radar configuration.
翻译:联合通信和遥感使得能够利用共同光谱资源进行通信和定位,降低部署费用。通过使用常规用于通信的第五代(5G)新无线电(NR)(即第三代伙伴项目5G无线电接入网络)参考信号,本文展示了在毫米波频率上可能的次米精确定位;我们得出了双轨雷达配置精确度的几何分分解,这是一个理论性指标,其特征是目标位置估计误差如何因二等几何制和测量误差而不同。我们开发了一个符合5GNR要求的软件测试台,在用5GNR波形估计到达时间差和到达角度差错时,以5GNR波形计算。测试台还用来进一步展示若干室内和室外双轨和多静态组合中目标定位和速度估计的准确性,并显示平均而言,双轨配置可在25米的双轨距上达到10.0厘米的定位精度,通过部署多调雷达可以进一步改进。