In this paper we refer to the Open Web to the set of services offered freely to Internet users, representing a pillar of modern societies. Despite its importance for society, it is unknown how the COVID-19 pandemic is affecting the Open Web. In this paper, we address this issue, focusing our analysis on Spain, one of the countries which have been most impacted by the pandemic. On the one hand, we study the impact of the pandemic in the financial backbone of the Open Web, the online advertising business. To this end, we leverage concepts from Supply-Demand economic theory to perform a careful analysis of the elasticity in the supply of ad-spaces to the financial shortage of the online advertising business and its subsequent reduction in ad spaces' price. On the other hand, we analyze the distribution of the Open Web composition across business categories and its evolution during the COVID-19 pandemic. These analyses are conducted between Jan 1st and Dec 31st, 2020, using a reference dataset comprising information from more than 18 billion ad spaces. Our results indicate that the Open Web has experienced a moderate shift in its composition across business categories. However, this change is not produced by the financial shortage of the online advertising business, because as our analysis shows, the Open Web's supply of ad spaces is inelastic (i.e., insensitive) to the sustained low-price of ad spaces during the pandemic. Instead, existing evidence suggests that the reported shift in the Open Web composition is likely due to the change in the users' online behavior (e.g., browsing and mobile apps utilization patterns).


翻译:在本文中,我们提到开放网络,指的是向互联网用户免费提供的一系列服务,这是现代社会的一个支柱。尽管对社会很重要,但尚不清楚COVID-19流行病是如何影响开放网络的。在本文中,我们讨论了这一问题,我们的分析侧重于西班牙,西班牙是受该流行病影响最大的国家之一。一方面,我们研究了该流行病在开放网络金融支柱,即在线广告业务中的影响。为此,我们利用了供应-需求和经济理论的概念,对提供广告空间的弹性进行了仔细分析,以弥补在线广告业务的财政短缺及其随后降低的公开网站价格。另一方面,我们分析了开放网络结构在商业类别中的分布情况及其在CVID-19大流行病期间的演变。这些分析是在1月1日至12月31日之间进行的,使用了包含来自180亿多个空间的信息的参考数据集。我们的研究结果表明,开放网站在商业类别中经历了适度的构成变化。然而,这种变化不是由在线市场使用率的变化造成的,而是由于在线市场价格的持续变化,因为在线市场价格的变化表明,在网上市场供应中,这种变化是持续的。

0
下载
关闭预览

相关内容

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
8+阅读 · 2020年10月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员