We show how emotions extracted from macroeconomic news can be used to explain and forecast future behaviour of sovereign bond yield spreads in Italy and Spain. We use a big, open-source, database known as Global Database of Events, Language and Tone to construct emotion indicators of bond market affective states. We find that negative emotions extracted from news improve the forecasting power of government yield spread models during distressed periods even after controlling for the number of negative words present in the text. In addition, stronger negative emotions, such as panic, reveal useful information for predicting changes in spread at the short-term horizon, while milder emotions, such as distress, are useful at longer time horizons. Emotions generated by the Italian political turmoil propagate to the Spanish news affecting this neighbourhood market.
翻译:我们展示了如何利用从宏观经济新闻中提取的情绪来解释和预测意大利和西班牙主权债券收益率未来的行为。我们使用一个称为全球事件、语言和托恩数据库的大型开放源码数据库来构建债券市场感官状态的情感指标。我们发现,从新闻中提取的负面情绪在痛苦时期改善了政府产出扩散模型的预测力,即使在控制了文本中的负字数之后也是如此。 此外,更强烈的负面情绪,如恐慌,揭示了预测短期范围传播变化的有用信息,而更温和的情绪,如危难,则在更长时期有用。意大利政治动荡产生的情绪传播到影响到这个邻国市场的西班牙新闻。